Electrophilicity of Pyridazine-3-Carbonitrile, Pyrimidine-2-Carbonitrile, and Pyridine-Carbonitrile Derivatives: A Chemical Model To Describe the Formation of Thiazoline Derivatives in Human Liver Microsomes | Dr. Sarmistha Deb

Electrophilicity of Pyridazine-3-Carbonitrile, Pyrimidine-2-Carbonitrile, and Pyridine-Carbonitrile Derivatives: A Chemical Model To Describe the Formation of Thiazoline Derivatives in Human Liver Microsomes | Dr. Sarmistha Deb

Unique GSH adduct formation was found in this study where the GSH adduct was formed through rearrangement reaction. So, there was no characteristic -129 neutral loss in this rearranged GSH adduct. Additionally it was direct GSH adduct where no CYP mediated Bioactivation was required. The GSH adduct formation was catalyzed by ?-glutamyltranspeptidase and non specific peptidase. The GSH adduct formation was compared between Pyrimidine, Pyridazine and Pyridine series and it was found that GSH adduct formation was maximum in case of Pyrimidine followed by Pyridazine and Pyridine. This trend was in keeping with the diminishing electrophilicity across these series, as demonstrated by in silico modeling. Hence, mechanistic insights gained from this study could be used to assist a medicinal chemistry campaign to design compounds that were less prone to the formation of reactive metabolites.

Certain aromatic nitriles are well-known inhibitors of cysteine proteases.The mode of action of these compounds involves the formation of a reversible or irreversible covalent bond between the nitrile and a thiol group in the active site of the enzyme. However, the reactivity of these aromatic nitrile-substituted heterocycles may lead inadvertently to nonspecific interactions with DNA, protein, glutathione, and other endogenous components, resulting in toxicity and complicating the use of these compounds as therapeutic agents. In the present study, the intrinsic reactivity and associated structure y property relationships of cathepsin K inhibitors featuring substituted pyridazines [6-phenylpyridazine-3-carbonitrile, 6-(4-fluorophenyl)-pyridazine-3-carbonitrile, 6-(4-methoxyphenyl)pyridazine-3-carbonitrile, 6-p tolylpyridazine-3-carbonitrile], pyrimidines [5-ptolylpyrimidine-2-carbonitrile, 5-(4-fluorophenyl)pyrimidine-2-carbonitrile], and pyridines [5-p-tolylpicolinonitrile and 5-(4-fluorophenyl)picolinonitrile] were evaluated using a combination of computational and analytical approaches to establish correlations between electrophilicity and levels of metabolites that were formed in glutathione- and N-acetylcysteine-supplemented human liver microsomes.

 Metabolites that were characterized in this study featured substituted thiazolines that were formed following rearrangements of transient glutathione and N-acetylcysteine conjugates. Peptidases including ?-glutamyltranspeptidase were shown to catalyze the formation of these products, which were formed to lesser extents in the presence of the selective ?-glutamyltranspeptidase inhibitor acivicin and the nonspecific peptidase inhibitors phenylmethylsulfonyl fluoride and aprotinin. Of the chemical series mentioned above, the pyrimidine series was the most susceptible to metabolism to thiazoline-containing products, followed, in order, by the pyridazine and pyridine series. This trend was in keeping with the diminishing electrophilicity across these series, as demonstrated by in silico modeling. Hence, mechanistic insights gained from this study could be used to assist a medicinal chemistry campaign to design cysteine protease inhibitors that were less prone to the formation of covalent adducts.

Key:

Complete
Failed
Available
Locked
Electrophilicity of Pyridazine-3-carbonitrile, Pyrimidine-2-carbonitrile, and Pyridine-carbonitrile Derivatives: A Chemical Model To Describe the Formation of Thiazoline Derivatives in Human Liver Microsomes
05/16/2023 at 11:00 AM (EDT)  |  Recorded On: 05/16/2023
05/16/2023 at 11:00 AM (EDT)  |  Recorded On: 05/16/2023 Unique GSH adduct formation was found in this study where the GSH adduct was formed through rearrangement reaction. So, there was no characteristic -129 neutral loss in this rearranged GSH adduct. Additionally it was direct GSH adduct where no CYP mediated Bioactivation was required. The GSH adduct formation was catalyzed by ? glutamyltranspeptidase and non specific peptidase. The GSH adduct formation was compared between Pyrimidine, Pyridazine and Pyridine series and it was found that GSH adduct formation was maximum in case of Pyrimidine followed by Pyridazine and Pyridine. This trend was in keeping with the diminishing electrophilicity across these series, as demonstrated by in silico modeling. Hence, mechanistic insights gained from this study could be used to assist a medicinal chemistry campaign to design compounds that were less prone to the formation of reactive metabolites.
Webinar Survey
4 Questions
Certificate of Attendance
No credits available  |  Certificate available
No credits available  |  Certificate available