Identification and Characterization of Selective Inhibitors of CYP3A5, AO and Beyond Using Novel Multiplexed HTS Approaches in Human Hepatocytes

Identification and Characterization of Selective Inhibitors of CYP3A5, AO and Beyond Using Novel Multiplexed HTS Approaches in Human Hepatocytes

Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4000 compounds generated many hits for many drug-metabolizing enzymes. This webinar will highlight the characterization of selective inhibitors of CYP3A5 (loteprednol etabonate) and AO (erlotinib and dibenzothiophene). We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.

Key:

Complete
Failed
Available
Locked
Identification and Characterization of Selective Inhibitors of CYP3A5, AO and Beyond Using Novel Multiplexed HTS Approaches in Human Hepatocytes
04/09/2024 at 11:00 AM (EDT)  |  Recorded On: 04/10/2024
04/09/2024 at 11:00 AM (EDT)  |  Recorded On: 04/10/2024 Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4000 compounds generated many hits for many drug-metabolizing enzymes. This webinar will highlight the characterization of selective inhibitors of CYP3A5 (loteprednol etabonate) and AO (erlotinib and dibenzothiophene). We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.
Webinar Survey
4 Questions
Certificate of Attendance
No credits available  |  Certificate available
No credits available  |  Certificate available