ISSX Webinars are presented by internationally recognized scientists on a variety of subjects relevant to the field. The ISSX Continuing Education Committee is charged with the responsibility for reviewing these educational offerings and setting the webinar schedule.

When you purchase a webinar registration, you will receive access to speaker slides, the recorded lecture, and the Q&A session.

  • Contains 3 Component(s)

    This webinar will introduce dynamic free fraction (fd) as a new concept characterizing drug protein binding and demonstrate the utility of fd in hepatic clearance mediated by CYP and OATP transporter.

  • Contains 3 Component(s)

    This webinar is intended to raise the awareness of complicated scenario where drug-drug-disease interaction occurs and how to evaluate the PK of drugs using PBPK to inform the optimal use of drugs in such patient group.

  • Contains 3 Component(s)

    In this webinar we will discuss efforts for improving the global underrepresentation of African genetics in science. We will further explore the current landscape and challenges in realizing an African hepatic modeling platform - with a specific focus on the development of hiPSC models that can better recapitulate hepatic function.

  • Contains 3 Component(s)

    This symposium/webinar is intended to educate ADME scientists on MPS technology and its potential to generate clinically translatable data.

  • Contains 3 Component(s)

    The human genome comprises approximately 20,000 protein-coding genes and over 900 million variants according to dbSNP. Systematic understanding of the impact of genomic alterations in humans is critical for the development of effective medicines. However, it is simply not feasible to study every single variant in detail. This challenge extends to the analysis of how pharmacogenes are affected by genetic polymorphisms, as it is impossible to study the impact of every individual single nucleotide polymorphisms/variations (SNPs/SNVs) of pharmacogenes in human clinical trials. Yet, understanding drug metabolism and pharmacokinetics is crucial for assessing drug efficacy and safety. To minimize harmful side effects from drugs while maximizing their therapeutic effectiveness in each patient or group of patients, we would need to understand the effects of population specific SNPs in pharmacogenes and drug-enzyme interactions. To date the effect of non-synonymous SNPs, more specifically missense mutations, at the protein level is poorly studied in pharmacogenomics research. We previously proposed a post-hoc analysis approach of molecular dynamics (MD) simulations using dynamic residue network (DRN) analysis to consider the dynamic nature of functional proteins and protein-drug complexes and to probe the impact of mutations and their allosteric effects. This talk will discuss the computational approaches and tools that we have developed over the years with applications to pharmacogenomics.

  • Contains 3 Component(s)

    Physiology-based pharmacokinetic (PBPK) models are broadly applied in late phase drug discovery/ development. Traditionally, compounds are prioritized based on hierarchical filtering with predefined cut-offs for desirable range of various parameters. PBPK models, when combined with related pharmacodynamic assumptions, offer a valuable platform to integrate multiple parameters driving the in vivo PK profile required for target engagement. They also provide mechanistic interpretation of key drivers for the predicted profile to further help with compound design strategies. As such, these results enable compound prioritization in a holistic manner, focusing on multi-property optimization (MPO). This presentation will provide a brief overview of the structure and application of an internal PBPK model. Examples of successful application of this tool on a small molecule drug discovery program will be shared to illustrate its role in driving decisions to guide compound progression.

  • Contains 3 Component(s)

    The purpose of this webinar is to: 1. Provide valuable knowledge exchange between ADC developers andthe Regulatory Agency (FDA) 2. Hear from leading experts in PK/PD, pharmacometrics, & clinical pharmacology, plus clinicians and regulatory minds, fostering collaborations and partnerships that can propel ADC projects seamlessly. 2. Demonstrate the successful integration of pharmacokinetics and pharmacometrics in ADC clinical development, enhancing your ability to apply these principles to your own work

  • Contains 3 Component(s)

    Pharmacogenomics is relevant worldwide for modern therapeutics and yet needs further uptake in developing countries. There is paucity of studies with a naturalistic design in real-life clinical practice in patients with comorbidities and multiple drug treatments. To evaluate the role and impact of host underlying genetics on treatment response, different approaches are used depending on existing levels of understanding on the functional significance of genetic variants in question. This lecture showcases the work done pharmacogenomics research and how this has occurred in Africa and how “omics” is being leveraged. Our approach focuses on common disease conditions and commonly used medications including herbal medicinal plants. We report on antiretroviral therapy and other treatments alter microRNA expression signatures and expression of drug-metabolizing enzyme genes, in vitro. These data point to several important clinical implications through changes in drug/drug interaction risks and achieving optimal therapeutics. Thus, differential expression of microRNAs after treatment with EFV and RMP adds another layer of complexity that should be incorporated in pharmacogenomic algorithms to render drug response more predictable. The lecture will reflect also on pharmacogenomics of herbal medicines, and interaction with conventional drugs. There is a trend of important genes and their variants coming being prominent biomarkers for responses for commonly used drugs. The use of a wholistic approach in pharmacogenomics research translation that transcends disciplinary boundaries incorporating different “omics” ultimately leading to precision medicine.

  • Contains 3 Component(s)

    This webinar is intended to provide education and updates of this evolving area to scientists and graduate students.

  • Contains 3 Component(s)

    This webinar is intended to share knowledge regarding development of a quantitative assay for siRNA using ddPCR.